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Oculocutaneous albinism (OCA) is an autosomal recessive disorder caused by either complete lack of or a reduction of melanin
biosynthesis in the melanocytes. The OCA1A is the most severe type with a complete lack of melanin production throughout
life, while the milder forms OCA1B, OCA2, OCA3, and OCA4 show some pigment accumulation over time. Mutations in TYR,
OCA2, TYRP1, and SLC45A2 are mainly responsible for causing oculocutaneous albinism. Recently, two new genes SLC24A5 and
C10orf11 are identified that are responsible to cause OCA6 and OCA7, respectively. Also a locus has been mapped to the human
chromosome 4q24 region which is responsible for genetic cause of OCA5. In this paper, we summarized the clinical and molecular
features of OCA genes. Further, we reviewed the screening of pathological mutations of OCA genes and its molecular mechanism
of the protein upon mutation by in silico approach. We also reviewed TYR (T373K, N371Y, M370T, and P313R), OCA2 (R305W),
TYRP1 (R326H and R356Q) mutations and their structural consequences at molecular level. It is observed that the pathological
genetic mutations and their structural and functional significance of OCA genes will aid in development of personalized medicine
for albinism patients.

1. Background

Albinism is a group of disorders caused by reduction of poly-
meric pigment melanin [1]. Melanin production is closely
regulated in the body and occurs in specialized ectodermal
derived cells called melanocytes. Generally, melanocytes
are possibly cutaneous (hair, skin) or extracutaneous (eye,
cochlea) which derived from different ectodermal lineages.
The terms albinism, oculocutaneous albinism (OCA), and
ocular albinism (OA) can be used both as a phenotypic
descriptions and as references to specific syndromes. Sir
Arcibald Garrod initially states albinism as an inborn error of
metabolism [2, 3], but it is now believed to be a heterogeneous
genetic disorder caused by mutations in several different
genes. Population studies have shown a genetic heterogeneity
with evidence pointing to several loci [3].

Oculocutaneous albinism (OCA) is a heterogeneous
and autosomal recessive disorder. Based on occurrence of
mutation, OCA is identified as nonsyndromic OCA genes

(TYR, OCA2, TYRP1, and SLC45A2) and syndromic OCA
genes (HPS1, AP3B1, HPS3, HPS4, HPS5, HPS6, DTNBP1,
BLOC1S3, PLDN, LYST, MYO5A, RAB27A, and MLPH) [4,
5]. The genes TYR, OCA2, TYRP1, and SLC45A2 are mainly
responsible for OCA. Apart from these four genes, other
genes are also involved to cause OCA. Several genes encod-
ing melanosomal proteins including SILV, RAB7, TYRP2,
SLC24A5, and RAB38 have been considered as good can-
didates for OCA. However, until recently, no pathological
mutations of these genes are reported in human OCA
patients [6–9]. Very recently, two new OCA genes are found.
Mutations of C10orf11 gene are identified in a family from
the Faroe Islands and in a Lithuanian patient [10]. Mutations
of SLC24A5 gene are found in a Chinese patient presenting
with nonsyndromic OCA [11]. In addition, an OCA locus is
mapped to 4q24 in a consanguineous Pakistani family, but the
gene has not yet been described [12].

Many polymorphisms have not been experimentally
illustrated in terms of their possible disease association. Also,
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the underlying mechanisms by which a genetic mutation
has a deleterious functional effect on its gene product thus
causes disease are not yet fully understood. In this study we
elucidate the molecular basis of OCA disorder caused by
disease-associated mutations. Further we have highlighted
a better understanding of the relationships between genetic
and phenotypic variation as well as protein structure and
function. Our review data further helps in the field of
pharmacogenomics to develop a personalized medicine for
OCA-associated disorders.

2. Prevalence

Albinism affects one in 20,000 individuals worldwide, but
the prevalence of individual subtypes varies among different
ethnic backgrounds [13]. OCA-1 is themost common subtype
found in Caucasians and accounts for about 50% of cases
worldwide [7, 14]. OCA-2, or brown OCA (BOCA), accounts
for 30% of cases worldwide and is most common in Africa,
where it is estimated to affect one in 10,000 and asmany as one
in 1,000 in certain populations [15, 16]. This is primarily due
to an OCA2 found deletion seen at high frequencies within
this population [16–19]. OCA3, or rufous OCA (ROCA), is
virtually unseen in Caucasians but affects approximately one
in 8,500 individuals from southern Africa or 3% of cases
worldwide [14]. OCA-4 is also rare among Caucasians as well
as Africans, but worldwide it accounts for 17% of cases and
in Japan it is diagnosed in one of four persons affected with
OCA [14, 20].

3. Symptoms

In general all types of albinism have some lack of pigmen-
tation, but the amount is different depending on the type.
OCA1 causes complete absence of pigment in the skin, hair,
and eyes, but some individuals may have some degree of
pigmentation. OCA1 also affects reduced visual acuity, pho-
tophobia (sensitivity to light), and nystagmus (involuntary
eye movement). OCA2 causes a minimal to moderate degree
of pigmentation in the hair, skin, and eyes. OCA3 has been
difficult to identify based on appearance alone. It has been
clearly noticeable when a very light-skinned child is born
to dark-skinned parents. Ocular albinism affects only the
eyes, causing minimal pigmentation. Difficulty controlling
eye movements, reduced visual acuity, and nystagmus may
occur [21]. OCA6 and OCA7 genes associated with albinism
shows the classic visual symptoms and signs but without an
obvious change in the pigmentation patterns [10, 11].

4. Genes Associated with
Oculocutaneous Albinism

4.1. TYR. OCA1 (MIM 203100) is caused by mutations in
the tyrosinase gene (TYR, MIM 606933) on chromosome
11q14.3 [22]. TYR gene consists of 5 exons spanning about
65 kb of genomic DNA which encodes a protein called
tyrosinase and consist of 529 amino acids [23]. TYR (EC
1.14.18.1) is a copper-containing enzyme catalysing the first

Table 1: Mutations detected for albinism associated genes.

Albinism Gene Chromosome
location Mutations

OCA1 TYR 11q14-q21 303
OCA2 OCA2 15q11.2-q12 154
OCA3 TYRP1 9p23 16
OCA4 SLC45A2 5p13.3 78
OCA5 ND 4q24 1
OCA6 SLC24A5 15q21.1 2
OCA7 C10ORF11 10q22.2-q22.3 1
OA1 GPR143 Xp22.3 114
LYST CHS1 1q42.1-q42.2 53
HPS1 HPS1 10q23.1-q23.3 31
AP3B1 HPS2 5q14.1 20
HPS3 HPS3 3q24 7
HPS4 HPS4 22cen-q12.3 13
HPS5 HPS5 11p14 11
HPS6 HPS6 10q24.32 9
HPS7 DTNBP1 6p22.3 2
HPS8 BLOC1S3 19q13.32 2
HPS9 BLOC1S6 15q21.1 1
Source: human gene mutation database, 05 Dec, 2013; ND: not determined.

two steps in the melanin biosynthesis pathway, converting
tyrosine to L-dihydroxy-phenylalanine (DOPA) and subse-
quently to DOPAquinone [24]. Mutations completely abol-
ishing tyrosinase activity result in OCA1A, while mutations
rendering some enzyme activity result in OCA1B allowing
some accumulation of melanin pigment over time. Almost
303 mutations in TYR are known [25] (Table 1).

Type 1 temperature sensitive oculocutaneous albinism
(OCA1-TS) is an extremely rare form of OCA1 characterized
by the production of temperature sensitive tyrosinase pro-
teins leading to dark hair on the legs, arms, and chest (cooler
body areas) and white hair on the scalp, axilla, and pubic
area (warmer body areas). Mutation in temperature sensitive
tyrosinase protein is inactivated at 37∘C.

4.2. OCA2. Mutations in the OCA2 gene (also known as
P-gene) (MIM 203200) cause the OCA2 phenotype (MIM
203200) [26]. The OCA2 gene consists of 24 exons (23 cod-
ing), spanning almost 345 kb of genomic DNA in the region
of 15q11.2-q12. It is highly polymorphic [27] and is suspected
to play an important role in human pigmentation [28–30].
This gene encodes P protein, a 110-kDa integral melanoso-
mal protein with 12 predicted transmembrane domains and
consists of 838 amino acids [27, 31, 32]. The P protein acts
as a precursor to melanin synthesis, within the melanocyte,
and serves as a key control point at which ethnic skin
colour variation is determined. Moreover, it may stabilize
or traffic the melanosomal protein such as tyrosinase which
regulate melanosomal pH or serve as amelanosomal tyrosine
transporter [26, 33–36]. Currently, in human gene mutation
database (HGMD) (http://www.hgmd.org/), 154 mutations
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in OCA2 gene are listed to cause OCA2 (Table 1). Due to
mutation, P protein might disturb the pigmentation charac-
teristics via altering the melanosomal tyrosine or tyrosinase
bioavailability or function.

4.3. TYRP1. OCA3 is mostly caused by the genetic mutation
in TYRP1 (MIM 115501) gene. OCA3 is also known as
Rufous oculocutaneous albinism. The human TYRP1 gene
consists of 8 exons and 7 introns, spanning almost 15–18 kb
of genomic DNA in the region of 9p23 [37–40]. This gene
that encodes a protein called tyrosinase-related protein 1
(Tyrp1) has a molecular weight of ∼75 kDa and appears to be
the most abundant melanosomal protein of the melanocyte
[41, 42]. Tyrp1 contains of 537 amino acid residues and shares
40–52% of amino acid homology to tyrosinase protein. Tyrp1
is involved in the maintenance of melanosome structure
and affects melanocyte proliferation and cell death [43–46].
Tyrp1 shows tyrosine hydroxylase activity, albeit under low
substrate (L-tyrosine) concentration, but no DOPA oxidase
activity [47, 48]. Human Tyrp1 also is involved in conversion
of L-tyrosine to DOPA with low turnover rates, by the
generation of low amounts ofDOPA. It is an essential cofactor
for tyrosinase activity [49]. Tyrp1 has also been attributed
with various other catalytic functions including dopachrome
tautomerase (Dct), dihydroxyindole (DHI) oxidase [50],
and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) [51].
To date, 16 mutations were found in TYRP1 gene which is
responsible for OCA3 (Table 1).

4.4. SLC45A2. Mutations in the membrane-associated trans-
porter protein gene (MATP, also known as SLC45A2
and MIM 606202) cause OCA4 (MIM 606574) [52].
MATP consists of 7 exons spanning approximately 40 kb of
genomic DNA, mapping to chromosomal position 5p13.3.
The SLC45A2/MATP protein consists of 530 amino acids
which contains 12 putative transmembrane domains and
shows sequence and structural similarity to plant sucrose
transporters. It is expressed in melanosomal cell lines [53,
54]. The function of SLC45A2 is still unknown, but studies
from Medaka fish show that the SLC45A2 protein plays an
important role in pigmentation and probably functions as
a membrane transporter in melanosomes [53]. Mutations
in SLC45A2 were found for the first time in a Turkish
OCA patient [52] and have since been found in German,
Japanese, and Korean OCA patients [20, 55–57]. Mutations
in SLC45A2 cause misrouting of tyrosinase similar to the
cellular phenotype of OCA-2 [58, 59]. To date, 78 mutations
were predicted in SLC45A2 gene which is responsible for
OCA4 (Table 1).

4.5. SLC24A5 and C10orf11. Mutations in SLC24A5 encode
another solute carrier protein. It is a well-known gene in
the pigment cell arena and is associated with a new form of
OCA, named as OCA6 (MIM 609802). SLC24A5 gene was
located in the chromosomal position of 15q21.1 [11]. SLC24A5
mutations were detected in patients of diverse ethnic origins,
thus indicating that OCA6 is not restricted to the Chinese
population. It is evident that the cutaneous phenotype was

heterogeneous with hair colour changing from white to
blond and dark brown [60]. A SNP in SLC24A5 (rs1426654)
encoding an alanine or threonine at position 111 was detected.
Prominently, Thr111 is present in almost all individuals
of European American origin, while Ala111 is present in
African Asian populations. Thr111 is associated with lighter
pigmented skin, thus suggesting an important role of this
SNP in the establishment of humanpigmentation [61]. Recent
results indicate a role of SLC24A5 in the maturation of
melanosomes. The assembly of SLC24A5 into melanosomes
showed an important role for the melanosomal architecture
and to ensure that melanin is synthesized properly. Hence,
the lack of SLC24A5 may impair or disrupt melanosomal
maturation and melanin biosynthesis [11].

Mutations in the C10orf11 gene were associated with
new form of OCA, designated as OCA7 (MIM 615179).
C10orf11was located in the chromosomal position of 10q22.2-
q22.3 [10]. C10orf11 encodes a 198 amino acid protein con-
taining three leucine-rich repeats (LRRs) and one LRR C-
terminal (LRRCT) domain. The family of LRRs-containing
proteins encompasses members with a variety of functions,
including cell adhesion and signalling, extracellular-matrix
assembly, neuronal development, and RNA processing [62].
The updated mutation list of these genes was shown in
Table 1.

5. Other Partial Albinism Disorders and
Their Genes

Ocular albinism (OA1) (MIM: 300500) is a form of albinism
that affects only the eyes. This disease is caused by mutation
in OA1/GPR143 gene which is located on the X chromosome
[63] and mutations lists were shown in Table 1. Pigment of
the skin and hair is normal or only slightly diluted. Human
eyes are severely affected with reduced visual acuity and
photophobia. Strabismus or nystagmus is frequently affected
with OA1. The fundus and irides are depigmented.

Hermansky-Pudlak syndrome (HPS) (MIM: 203300) is
a rare autosomal recessive [64] disorder which results in
oculocutaneous albinism (decreased pigmentation), bleed-
ing problems due to storage of an abnormal fat-protein
compound (lysosomal accumulation of ceroid lipofuscin),
and platelet abnormality (platelet storage pool defect). HPS
type 1–9 is caused by mutations in following genes: HPS1,
AP3B1, HPS3, HPS4, HPS5, HPS6, DTNBP1, BLOC1S3, and
BLOC1S6, respectively, and their updated mutations lists
were shown in Table 1.The disease can affect the dysfunctions
of lungs, intestine, kidneys, or heart. The major severe form
of disorder is pulmonary fibrosis, which routinely exhibits
in patient’s ages of 40–50 years [65]. The disorder is more
common in Puerto Rico [66], where it affects approximately
1 in 1,800 individuals [67].

Chédiak-Higashi syndrome (CHS1) (MIM: 214500) is a
rare autosomal recessive disorder caused by themutation of a
lysosomal trafficking regulator protein and leads to a decrease
in phagocytosis [68]. The decrease in phagocytosis results
in recurrent pyogenic infections, peripheral neuropathy, and
partial albinism. The eye, skin, and hair pigment is reduced
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Figure 1: Flow chart of OCA 1–4 gene analysis.

or diluted in CHS [69, 70]. Mutations in the CHS1 gene
(also known as LYST) have been found to be connected with
Chédiak-Higashi syndrome (Table 1). CHS1 gene provides
instructions for making a protein known as the lysosomal
trafficking regulator. Scientists believe that this protein plays
a major role in the transport (trafficking) of materials into
structures called lysosomes. Lysosomes act as recycling cen-
ters within cells. Digestive enzymes are used to break down
toxic substances, digest bacteria that invade the cell, and
recycle worn-out cell components.

6. Computational Screening of Pathological
Mutation and Their Molecular Mechanism

Due to the presence of huge amount of variations data,
experimental study of each variant cannot be achieved in
a reasonable timescale. Therefore, predictive analysis of the
effects of polymorphisms on gene function is needed in
order to prioritize the cases that require further study, to
elucidate the molecular basis of albinism disorders caused by
nonsynonymous mutations. Further, it helps to observe the
structural and functional changes of protein upon mutation
at atomic level. Screening of nsSNPs of OCA 1–4 genes were
analyzed by following computational methods SIFT (delete-
rious =≥0.05; tolerated =≤0.05), PolyPhen (damaging =≥1.5;
benign = ≤1.5), PolyPhen 2.0 (damaging = ≤0.5; benign =
≥0.51), I-Mutant 2.0 (decrease stability = (DDG < 0; increase
stability =DDG> 0), I-Mutant 3.0 (decrease =≤0.5 kcal/moL;
Increase = ≥0.5 kcal/moL), and PANTHER (deleterious
(> −3); tolerated < −3)). The nsSNPs which were commonly
predicted by the above servers were further applied in PHD-
SNP, SNP&GO, Pmut, and Mutpred servers to screen the

most deleterious and disease-associated mutations in OCA
1–4 genes. The strategy of our investigation is depicted in
Figure 1.

The predicted disease-associated mutations could be
endorsed with the observed experimental data [71, 72].
The SNP information of OCA 1–4 genes was retrieved
from dbSNP/Swiss-prot/albinism database. To understand
the atomic arrangement in 3D space, the native and mutant
structures ofOCA (Tyr, P, Tyrp1, and SLC45A2) proteinswere
modelled. Molecular dynamics simulation approach was
applied to observe the structural and functional behaviour of
OCA proteins upon mutation at atomic level. In this review
we highlighted the structural and functional consequence of
TYR, OCA2, and TYRP1 genes, respectively.

6.1. OCA1A. In this study, we rationalized the structural
and functional behaviour of tyrosinase protein upon muta-
tion. Based on our investigations we reported the potential
candidate SNPs for advanced studies. Out of 57 nsSNPs,
four nsSNPs T373K, N371Y, M370T, and P313R in tyrosinase
protein were predicted to be functionally significant from our
datasets (Table 2).

Threading based approach was applied to predict the
model structure of native andmutant TYR proteins. Molecu-
lar dynamics simulation approach was applied for refinement
of predicted structure of native and mutant TYR proteins.
Quantitative and structural approach was performed to
rationalized deleteriousmutation in TYR gene andmolecular
mechanism in OCA1A. Due to mutation, TYR structural
orientationwas altered and becamemore rigid in nature.This
structural disturbance might affect the function of protein
and thus the reason to cause OCA1A [73].The superimposed
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Table 2: Gene names, chromosome location, protein name, and predicted mutations of OCA1–4.

Disease types Gene Chromosome
location Protein Predicted mutations

OCA1A TYR 11q14.3 Tyrosinase T373K, N371Y, M370T, P313R

OCA2 OCA2 15q11.2-q12 P protein/melanocyte-specific transporter
protein R305W

OCA3 TYRP1 9p23 Tyrosinase related protein-1 R326H, R356Q
OCA4 SLC45A2/MATP 5p13.3 Membrane-associated transporter protein Y317C

THR-373 

LYS-373 

(a)

ASN-371 

TYR-371 

(b)

MET-370 

THR-370 

(c)

ARG-313 

PRO-313 

(d)

Figure 2: The superimposed structure of native and mutant TYR proteins and mutant residues in stick model: (a) T373K, (b) N371Y, (c)
M370T, and (d) P313R.

structure of native and mutant tyrosinase protein and its
mutation was displayed in Figures 2(a)–2(d).

6.2. OCA2. Using computational approach we screened the
most deleterious and disease-associated mutation (R305W)
on OCA2 gene from 95 input variants datasets (Table 2). In
this analysis, we applied molecular modelling and molecular
dynamics simulation approach to examine the structural and
functional behaviour of P protein upon mutation. From the
molecular dynamics simulation analysis, we confirmed that
due to occurrence of mutation the structure loss stability and
becamemore flexible in conformation [74]. Due to flexibility,
P protein losses the catalytic function inmelanin biosynthesis
and might also play a significant role in inducing OCA2 [74].

The superimposed structure of native and mutant P protein
and its mutation was shown in Figure 3(b).

6.3. OCA3. In this analysis, we applied in silico approach to
screen the most disease-associated mutation on TYRP1 gene.
Out of 63 nsSNPs, we screened the most disease-associated
(R326H andR356Q)mutations on TYRP1 gene (Table 2).The
structural analyses of native and mutant Tyrp1 proteins were
scrutinized by molecular modelling and molecular dynamics
simulation (MDS) approach. From this analysiswe confirmed
that, TYRP1 protein alter the structural conformation and
loss the flexibility behaviour upon mutation [75]. The struc-
tural alteration of TYRP1 protein upon mutation was clearly
discussed and shown in our previous studies (Figure 4) [75].
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Figure 3: (a) Snapshots of native and mutant P protein conformation at different simulation time steps [74]. (b)The superimposed structure
of native and mutant (R305W) P proteins and mutant residues in a stick model.
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Figure 4: Snapshots of native and mutant (R326H and R356Q) TYRP1 protein conformation at different simulation time steps [75].
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Figure 5: (a) The superimposed structure of native and mutant structures (R326H and R356Q) TYRP1 proteins and mutant residues in a
stick model. (b) The superimposed structure of native and mutant (Y317C) SLC45A2 proteins and mutant residue as a stick model.

In Figure 4, both mutant (R326H and R356Q) structures
showed an increase in helical content which leads to became
more rigid on conformation. Due to rigidity, Tyrp1 protein
may lose stability of the tyrosinase protein and modulate its
catalytic activity in eumelanin synthesis. It may also disturb
the maintenance of melanosome structure and may lead
to affect melanocyte proliferation and cell death [75]. The
superimposed structure of native and mutant Tyrp1 protein
and its mutation residues was shown in Figure 5(a).

6.4. OCA4. In this investigation, we implemented multiple
computational approaches to identity the most disease-
associated mutations in SLC45A2 gene. Based on SIFT,
PolyPhen 2.0, I-Mutant 3.0, PANTHER, SNP&GO, PhD-SNP,
Pmut, and MutPred servers, we screened the most disease-
associated mutation (Y317C) on SLC45A2 gene (Table 2). It
may lead to affect the structural conformation and function
of the SLC45A2/MATP protein upon mutation. The super-
imposed structure of native and mutant (Y317C) SLC45A2
protein and its mutation was shown in Figure 5(b). The
predicted mutations on TYR, OCA2, and TYRP1 genes and
their molecular mechanism can further help wet lab scientist
to develop a potent drug target for OCA type 1–3.

7. Preclinical Attempts for Albinisms

To date, three drugs were found for albinism related disor-
ders. L-DOPA [76–79] and Adeno associated viral vectors
(AAV) [80, 81] helps to treat the OCA1 and OA1. A third
therapeutic approved drug, nitisinone, originally devised to
treat patients with hereditary tyrosinemia type 1 [82]. This
drug has a useful side effect, because it triggers the anomalous
accumulation of tyrosine in the blood, thus increasing the

concentration of the reagent used by the enzyme tyrosi-
nase (TYR) and resulting in an increased oxidation and
improved pigmentation in eyes and skin of mouse models
of OCA1B, with some residual tyrosinase activity. Also, the
group of Fukai (Osaka, Japan) has suggested the use of
aminoglycosides, known to allow the read-through effect
over certain nonsense mutations, as a potential therapeu-
tic intervention for some mutations commonly found in
albinism [83]. These very promising results soon will be
also investigated in humans, in tentative clinical trials. Some
people are working to develop a potent drug targets for
skin (reduced pigmentation) disorders [84–87]. Additional
studies and validations are still required before transferring
any of these therapeutic proposals, here listed, to routine
treatment for human subjects.

8. Concluding Remarks

Albinisms are studied for many years as a congenital rare
disease without cure, where a person born with albinism
will ultimately die with the same disease. This situation
has now changed and will continue improving in the near
future. Oculocutaneous albinism is caused by all the ethnic
backgrounds of humans. It is caused by the mutation in OCA
genes. Due to mutation, the melanin biosynthesis pathway
inhibits the action of melanin synthesis, which leads to
albinism.Our predictions suggest a significant computational
approach to detect the OCA 1–3 (TYR, TYRP1, OCA2,
and SLC45A2 genes) associated SNPs from the large SNP
dataset and reduce the expenses in experimental depiction
of pathological mutations. Most of this pathological evidence
identified in OCA has been reported and still we lack in
understanding their associated molecular mechanism. To
develop an efficient therapeutic approach, it is highly neces-
sary to understand the detailed knowledge of their molecular
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mechanisms, to illustrate their structural and functional
behaviours in detail. The SLC45A2, SLC24A2, and C10orf11
genes structural and functional behaviours are still unknown.
We must also continue to elucidate the high resolution 3D
structures and their localization patterns of OCA genes, as
these data will aid in developing a potent drug target for
albinism related disorders.
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